The two strands of the famous double helix in DNA are held together by hydrogen bonds between hydrogen atoms attached to nitrogen on one strand, and lone pairs on another nitrogen or an oxygen on the other one. Methane and its heavier congeners in group 14 form a series whose boiling points increase smoothly with increasing molar mass. This involves vector calculus and triple integration, \[ M_n = \iiint_V\mathbf r^n \rho(r) \, dV \label{moment} \]. to large molecules like proteins and DNA. Intermolecular Forces and Interactions (Worksheet) This is the expected trend in nonpolar molecules, for which London dispersion forces are the exclusive intermolecular forces. What are the main intermolecular forces found in a liquid - Socratic Rochelle_Yagin. The cohesion-adhesion theory of transport in vascular plants uses hydrogen bonding to explain many key components of water movement through the plant's xylem and other vessels. Water (H20) dipole-dipole. Consequently, N2O should have a higher boiling point. KBr (1435C) > 2,4-dimethylheptane (132.9C) > CS2 (46.6C) > Cl2 (34.6C) > Ne (246C). Indicate which of the following properties will increase, decrease or remain unaffected by an increase in the strength of the intermolecular forces? However, the relevant moments that is important for the IMF of a specific molecule depend uniquely on that molecules properties. Bodies of water would freeze from the bottom up, which would be lethal for most aquatic creatures. To predict the relative boiling points of the other compounds, we must consider their polarity (for dipoledipole interactions), their ability to form hydrogen bonds, and their molar mass (for London dispersion forces). Then the same interactions discussed above can occur. NBr3 (Nitrogen tribromide) Molecular Geometry, Bond Angles Because electrostatic interactions fall off rapidly with increasing distance between molecules, intermolecular interactions are most important for solids and liquids, where the molecules are close together. In contrast, the hydrides of the lightest members of groups 1517 have boiling points that are more than 100C greater than predicted on the basis of their molar masses. Chemical bonds (e.g., covalent bonding) are intramolecular forces which hold atoms together as molecules. If a substance is both a hydrogen donor and a hydrogen bond acceptor, draw a structure showing the hydrogen bonding. As expected, molecular geometry also plays an important role in determining \(\rho(\vec{r})\) for a molecule. On average, however, the attractive interactions dominate. Intermolecular forces are electrostatic in nature; that is, they arise from the interaction between positively and negatively charged species. GeCl4 (87C) > SiCl4 (57.6C) > GeH4 (88.5C) > SiH4 (111.8C) > CH4 (161C). The forces that hold molecules together in the liquid and solid states are called intermolecular forces and are appreciably weaker. The polarities of individual molecules tend to align by opposites, drawing the molecules together and thereby favoring a condensed phase. This process is called hydration. For example, an uncharged molecule will not have a monopole moment and hence will not have monopole-monopole IMF, nor monopole-dipole or monopole-quadrupole IMFs. (see Interactions Between Molecules With Permanent Dipoles). 1. What is the strongest intermolecular force present for - Brainly Hydrogen bonding also occurs in organic molecules containing N-H groups - in the same sort of way that it occurs in ammonia. Ethanol, CH3CH2OH, and methoxymethane, CH3OCH3, are structural isomers with the same molecular formula, C2H6O. Examples range from simple molecules like CH3NH2 (methylamine) to large molecules like proteins and DNA. Molecules with net dipole moments tend to align themselves so that the positive end of one dipole is near the negative end of another and vice versa, as shown in Figure \(\PageIndex{1a}\). A) London-dispersion forces B) ion-dipole attraction C) ionic bonding D) dipole-dipole attraction E) hydrogen-bonding A Of the following substances, only __________ has London dispersion forces as the only intermolecular force. In contrast to intra molecular forces, such as the covalent bonds that hold atoms together in molecules and polyatomic ions, inter molecular forces hold molecules . The strengths of London dispersion forces also depend significantly on molecular shape because shape determines how much of one molecule can interact with its neighboring molecules at any given time. These interactions occur because of hydrogen bonding between water molecules around the, determine the dominant intermolecular forces (IMFs) of organic compounds. This is due to the similarity in the electronegativities of phosphorous and hydrogen. Thus, we see molecules such as PH3, which no not partake in hydrogen bonding. This creates a sort of capillary tube which allows for capillary action to occur since the vessel is relatively small. The combination of large bond dipoles and short dipoledipole distances results in very strong dipoledipole interactions called hydrogen bonds, as shown for ice in Figure \(\PageIndex{6}\). is due to the additional hydrogen bonding. CHEM 1120 Chapter 11 Flashcards | Quizlet B The one compound that can act as a hydrogen bond donor, methanol (CH3OH), contains both a hydrogen atom attached to O (making it a hydrogen bond donor) and two lone pairs of electrons on O (making it a hydrogen bond acceptor); methanol can thus form hydrogen bonds by acting as either a hydrogen bond donor or a hydrogen bond acceptor. Acetone (CH2O) dipole-dipole. This makes their electron clouds more deformable from nearby charges, a characteristic called polarizability. compound intermolecular forces (check all that apply) dispersion dipole hydrogen-bonding SiH silane . The hybridization of NBr3 is Sp. Based on your knowledge of chemicals, rank the IMFs in Table \(\PageIndex{2}\) terms of strongest to weakest. Also, the absence of intermolecular forces above the surface of a liquid results in surface tension, the development of a skin on the surface, which causes beading of liquid droplets and also allows light objects to rest on a liquid surface without sinking (e.g., water bugs). This result is in good agreement with the actual data: 2-methylpropane, boiling point = 11.7C, and the dipole moment () = 0.13 D; methyl ethyl ether, boiling point = 7.4C and = 1.17 D; acetone, boiling point = 56.1C and = 2.88 D. Arrange carbon tetrafluoride (CF4), ethyl methyl sulfide (CH3SC2H5), dimethyl sulfoxide [(CH3)2S=O], and 2-methylbutane [isopentane, (CH3)2CHCH2CH3] in order of decreasing boiling points. (For more information on the behavior of real gases and deviations from the ideal gas law,.). Methane (CH) London dispersion forces . Although hydrogen bonds are significantly weaker than covalent bonds, with typical dissociation energies of only 1525 kJ/mol, they have a significant influence on the physical properties of a compound. Similarly, if a molecule does not have a dipole moment nor monopole moment, then quadrupolar interactions will be important. This results in a hydrogen bond. The first compound, 2-methylpropane, contains only CH bonds, which are not very polar because C and H have similar electronegativities. The diagram shows the potential hydrogen bonds formed to a chloride ion, Cl-. Hydrogen bond strengths typically are in the range 4 - 46 kJ/mol, much less than the strengths of typical covalent bonds. This mechanism allows plants to pull water up into their roots. Identify the intermolecular forces in each compound and then arrange the compounds according to the strength of those forces. An alcohol is an organic molecule containing an -OH group. \(\rho(\vec{r})\) will describe polarized bonds resulting from the an unequal sharing of electrons between electronegative elements (O, N, halogens) and electronegative atoms. Nitrogen tribromide is slightly polar in nature. Like covalent and ionic bonds, intermolecular interactions are the sum of both attractive and repulsive components. silicon tetrafluoride SiF4 London dispersion forces 4 nitrogen When \(q_1\) and \(q_2\) have opposite signs, the force is positive (i.e., an attractive interaction). Nitrogen tribromide | Br3N - PubChem Nonpolar covalent difference in electronegativity. PDF Intermolecular Attractive Forces - Oklahoma State University-Stillwater A C60 molecule is nonpolar, but its molar mass is 720 g/mol, much greater than that of Ar or N2O. You should try to answer the questions without accessing the Internet. Intermolecular forces Flashcards | Quizlet \(A\) and \(B\) are proportionality constants and \(n\) and \(m\) are integers. For example, intramolecular hydrogen bonding occurs in ethylene glycol (C2H4(OH)2) between its two hydroxyl groups due to the molecular geometry. Solved Decide which intermolecular forces act between the - Chegg These interactions occur because of hydrogen bonding between water molecules around the hydrophobe and further reinforce conformation. fWhat is the strongest intermolecular force present for each of the following molecules? They arise from the formation of temporary, instantaneous polarities across a molecule from circulations of electrons. Of the compounds that can act as hydrogen bond donors, identify those that also contain lone pairs of electrons, which allow them to be hydrogen bond acceptors. Study Intra- vs. Intermolecular Forces Flashcards | Quizlet They have the same number of electrons, and a similar length to the molecule. Helium is nonpolar and by far the lightest, so it should have the lowest boiling point. Worksheets: General Chemistry (Traditional), { "Acid-Base_Equilibria_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid-Base_Pairs_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acids_and_Bases_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Acid_Nomenclature_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Balancing_Redox_Reactions_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Balancing_Redox_Reactions_2_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Bohr_Atomic_Model_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Buffers_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Buffers_and_Titration_Curves_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Building_Atoms_with_Quantum_Leaps_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chemical_Bonding_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Colligative_Properties_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Combustion_Analysis_and_Concentration_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Coordination_Nomenclature_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Crystal_Field_Splitting_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Crystal_Field_Theory_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Density_and_Archimedes\'_Principle__(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Descriptive_Chemistry_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Descriptive_Chemistry_II_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Dipole_Moments_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Electrochemistry__(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Electron_Arrangments_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Enthalpy_1_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Enthalpy_2_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Entropy_and_Probability_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Equilibria_1_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Equilibria_2_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Equilibria_and_Equilibrium_Constants_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Formulas_and_Masses_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gases:_Law_of_Combining_Volumes_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gases_I_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gas_Laws_1_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gas_Laws_2_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Gas_Laws_and_Applications_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Heat_and_Hess_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Hess\'s_Law_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Inorganic_Nomenclature_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Intermolecular_Forces_and_Interactions_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Intermolecular_Interactions_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Introduction_to_Acids_and_Bases_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Introduction_to_Thermochemistry_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Ions_in_Solution_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Kinetics_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Kinetics_III_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Kinetics_II_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Kinetics_I_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Kinetic_Theory_of_Gases_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Lattice_Enthalpies_and_Born_Haber_Cycle_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Lewis_Dot_Structures_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Lewis_Structures_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Limiting_Reagents_2_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Mathematics_and_Measurements_1_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Molarity_1_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Molecular_Orbital_Diagrams_of_Diatomics_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Molecular_Orbital_Theory_(Worksheets)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Molecular_Structure_1_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Molecular_Structure_2_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Molecules_and_Moles_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Moles_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Nomenclature:_Worksheet" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Nomenclature_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Nuclear_Fusion_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Nuclear_II_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Nuclear_Kinetics_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Optical_Isomers_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "OxidationReduction_Reactions_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Oxidation_numbers_and_Electronic_Configurations_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Oxidation\u2010Reduction_Reactions_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "pH_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "pH_and_Titrations_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Point_Groups_1_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Point_Groups_2_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Polarity_and_Bonding_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Pure_Phases_and_their_Transitions_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Quantum_Numbers_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Reactions_of_Oxides_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solubility_and_Ksp_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solutions:_Limiting_Reagents_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solutions_and_Vapor_Pressures_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Solution_Composition_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Stoichiometry_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Thermochemistry_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Thermodynamics_(Worksheet)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Unit_Conversion_and_Dimensional_Analysis_(Workshop)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "Worksheets:_General_Chemistry_(Guided_Inquiry)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Worksheets:_General_Chemistry_(Traditional)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, Intermolecular Forces and Interactions (Worksheet), [ "article:topic", "license:ccbyncsa", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FAncillary_Materials%2FWorksheets%2FWorksheets%253A_General_Chemistry%2FWorksheets%253A_General_Chemistry_(Traditional)%2FIntermolecular_Forces_and_Interactions_(Worksheet), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Electrostatics and Moments of Fixed Charge Distributions, Permanent - Permanent Charge Distribution IMFs, Permanent - Induced Charge Distribution IMFs, Instantaneous - Induced Charge Distribution IMFs, If n=1, then \(M_1\) is the monopole moment and is just the net charge of the distribution, If n=2, then \(M_2\) is the dipole moment, If n=3, then \(M_3\) is the quadrupole moment, If n=4, then \(M_4\) is the octupole moment, dimethyl ether (\(CH_3OCH_3\)), ethanol (\(CH_3CH_2OH\)), and propane (\(CH_3CH_2CH_3\)), \(CHCl_3\) (61 C) and \(CHBr_3\) (150 C), vapor pressure (pressure of gas above a liquid sample in a closed container) decreases with increased intermolecular forces, normal boiling point (boiling point at 1 atmosphere pressure) increases with increased intermolecular forces, heat of vaporization (heat requires to take a liquid sample to the gaseous phase) increases with increased intermolecular forces, surface tension (adhesion of molecules) increases with increased intermolecular forces.